Hadeïkum: Verskil tussen weergawes

in Wikipedia, die vrye ensiklopedie
Content deleted Content added
Jcwf (besprekings | bydraes)
Jcwf (besprekings | bydraes)
Lyn 72: Lyn 72:
==== Kanadium ====
==== Kanadium ====
;Omtrent 255 miljoen jaar
;Omtrent 255 miljoen jaar
Hierdie periode is vernoem na Kanada. Insluitsels in die Nuvvuagittuq-[[groensteengordel]] in Quebec word met hulle 4,28 miljard jaar as die oudste steeds bestaande (reste van) gesteentes van die Aarde beskou.<ref>Geochronology, Dating, and Precambrian Time: The Beginning of the World as We Know It {{Outeur|Rafferty, John P}}, Britannica Educational Publishing, 2010, ISBN 1-61530-195-X, ISBN 978-1-61530-195-9 bls. 160</ref> O'Neil et al. (2009) het gesteentes beskrewe uit die omgewing van die Hudsonbaai wat 'n leeftyd van 4,28 miljard jaar lewer. Hierdie waarde word verkry deur vergelyking van die voorkoms van die stabiele isotoop neodimium-142 (die dogter van die [[uitgestorwe oerisotoop|uitgestorwe isotoop]] [[samarium-146]]) met neodimium-144. {{sub sup|146|}}Sm het 'n halfleeftyd van 103 miljoen jaar. Hierdie verskille in {{sub sup|142|}}Nd/{{sub sup|144|}}Nd-[[isotoopverhouding]] kan slegs ontstaan het toe {{sub sup|146|}}Sm nog voorgekom het.
Hierdie periode is vernoem na Kanada. Insluitsels in die Nuvvuagittuq-[[groensteengordel]] in Quebec word as die oudste steeds bestaande (reste van) gesteentes van die Aarde beskou.<ref>Geochronology, Dating, and Precambrian Time: The Beginning of the World as We Know It {{Outeur|Rafferty, John P}}, Britannica Educational Publishing, 2010, ISBN 1-61530-195-X, ISBN 978-1-61530-195-9 bls. 160</ref> O'Neil et al. (2009) het gesteentes beskrewe uit die omgewing van die Hudsonbaai wat 'n leeftyd van 4,28 miljard jaar lewer. Hierdie waarde word verkry deur vergelyking van die voorkoms van die stabiele isotoop neodimium-142 (die dogter van die [[uitgestorwe oerisotoop|uitgestorwe isotoop]] [[samarium-146]]) met neodimium-144. {{sub sup|146|}}Sm het 'n halfleeftyd van 103 miljoen jaar. Hierdie verskille in {{sub sup|142|}}Nd/{{sub sup|144|}}Nd-[[isotoopverhouding]] kan slegs ontstaan het toe {{sub sup|146|}}Sm nog voorgekom het.


Hierdie resultate wys dat in die Hadeïkum waarskynlik reeds vaste korsgesteentes bestaan het, maar dat hulle later weer vernietig is.<ref name="Sleep" /> Hierdie bewering is nogtans omstrede omdat nie duidelik is nie of dit die ouderdom van die gesteentes betref of van die gesmelte magma waaruit hulle ontstaan het.<ref>[https://www.newscientist.com/article/dn14818-discovery-of-worlds-oldest-rocks-challenged/ New Scientist]</ref>
Hierdie resultate wys dat in die Hadeïkum waarskynlik reeds vaste korsgesteentes bestaan het, maar dat hulle later weer vernietig is.<ref name="Sleep" /> Hierdie bewering is nogtans omstrede omdat nie duidelik is nie of dit die ouderdom van die gesteentes betref of van die gesmelte magma waaruit hulle ontstaan het.<ref>[https://www.newscientist.com/article/dn14818-discovery-of-worlds-oldest-rocks-challenged/ New Scientist]</ref>

Wysiging soos op 16:48, 1 September 2018

Die nuut gevormde Aarde het 'n hoë temperatuur gehad vanweë vulkaniese uitbarstings en botsings.
Eon Era Periode Ouderdom  Ga.
Argeïkum Paleo-argeïkum later
Hadeïkum Neohadeïkum Prometium 4,0 - 3,9
Acastium 4,1 - 4,0
Mesohadeïkum Prokrustium 4,2 - 4,1
Kanadium 4,3 - 4,2
Paleohadeïkum Jakobium 4,4 - 4,3
Hefestium 4,5 - 4,4
Chaotium
Neochaotium Titanomachium
Hiperium
Eochaotium Erebrium
Nefelium

Die Hadeïkum of Hadeïese Eon is die eerste geologiese eon in die Aarde se bestaan. Dit het sowat 4,54 miljard jaar gelede begin met die vorming van die Aarde en sowat 4 miljard jaar gelede geëindig met die begin van die Argeïkum. Die naam kom van Hades, die antieke Griekse god van die onderwêreld na aanleiding van die hel-agtige toestande op die Aarde in dié tyd: die planeet het pas gevorm en was nog baie warm en wys dikwels vulkaniese uitbarstings, ’n gedeeltelik gesmelte oppervlak en gereelde botsings met ander liggame in die Sonnestelsel.

Langlewende radio-aktiewe oerisotope soos uraan-235 of kalium-40 was nog in groter konsentrasies aanwesig en het 4 keer meer hitte vrygestel as vandag. Hierdeur het gesteentes wat volop U, Th of K bevat het nie kon stol nie en hulle het vloeibaar gebly. Die kors het veral basalte bevat wat arm aan hierdie elemente was. [1] Wat nou as uitgestorwe oerisotope beskou word soos 182Hf het in die vroeë tyd nog 'n natuurlike voorkoms gehad en ook bygedra tot die radioaktiwiteit en die ontwikkeling van hitte wat dit veroorsaak. Omdat hulle dogternukliede ander chemiese eienskape besit -hulle behoort mos tot 'n ander element- kan hulle later geskei raak. Dit lewer 'n tegniek wat byvoorbeeld die differensiasie van hemelliggame in 'n kern en 'n kors kan dateer.[2]

Ouer geskrifte verwys dikwels na dié eon bloot as die Pre-Argeïkum, maar in nuwer literatuur word die vroeë tyd van ons planeet en sy sonnestelsel in baie meer besonderhede beskrewe. Daar is nouliks gesteentes wat uit die Hadeïkum dateer. Van die oudste gesteentes (die Acasta gneisskompleks van Kanada) strek van 4,2 tot 3,6 miljard jaar gelede. Dit word soms as die begin van die Argeïkum beskou, maar die denkbeelde is volop in ontwikkeling. Die skaarste van gesteentes maak die Hadeïkum 'n tydperk wat moeilik is om te bestudeer. Die meeste inligting oor die Hadeïkum stam van die studie van elementverhoudings en isotoopverhoudings van gesteentes van die Aarde, die Maan en veral van meteoriete. [3]

Goldblatt et al verdeel die vroeë tyd in twee eons, die Chaotium en die eintlike Hadeïkum. Die eerste eon word in twee eras verdeel en die tweede in drie. Elke era word in twee periodes ingedeel. Hierdie artikel sal hulle indeling gebruik, hoewel hieroor seker geen eenstemmigheid is nie.[4] Die kennis oor die vroeë geskiedenis van die sonnestelsel en die Aarde is vandag (2018) nog volop in ontwikkeling en die volgende tydlyn kan seker nog gewysig word.

Chaotium

Nefelium en Erebrium

Die Goldblatt-indeling noem hierdie vroegste era van die Chaotium die Eochaotium en verdeel dit in:

  • die Nefelium , die tyd toe die planetêre newel hom afskei uit die reusewolk van materiaal wat deur 'n supernova is nagelaat
  • die Erebreum toe die son as gaswolk gevorm het, maar dit nog donker was

Nefelium verwys na "newel", terwyl Erebieum na Erebus, die duisternis, vernoem is.

Neochaotium

Die begin van die sonnestelsel.
Die protoplanetêre newel

Die volgende Goldblatt-era word die Neochaotium genoem. Sy twee eras is:

  • die Hiperitium, vermoem na die songod Hyperion, begin toe die son het begin om te skyn omdat kernfusie begin het
  • die Titanomachium verwys na die stryd van die Titane en is die tyd waarin die protoplanete gevorm het

Die geboorte van die sonnestelsel word op 4,567 miljard jaar gelede beraam. (Amelin et al. 2002) [3] Dit bestaan aanvanklik net uit 'n protoplanetêre newel wat om 'n nuutgevormde ster in sy middel wentel, wat die Son sal word.

Hiperitium

Omtrent 0-10 miljoen jaar later
Die Gujba-meteoriet, 'n koolstofhoudende chondriet met metaalchondrules

In die eerste paar miljoen jaar word chondriete gevorm, wat soms vandag steeds as meteoriete die Aarde kan bereik. Hulle vorming vind as 'n proses van kondensasie van elemente, groei en klontering van stofdeeltjies plaas. Die datering van hierdie gebeurtenisse berus hoofsaaklik op Pb/Pb-datering van meteoriete.[3]

Titanomachium

Omtrent 10-20 miljoen jaar

Later begin hierdie chondriete onder invloed van die swaartekrag saam te klonteer tot planetesimale. In hierdie groter liggame vind differensiasie plaas. In hierdie proses vorm hulle 'n silikaatryke kors (BSE; Bulk Silicate Earth) ryk aan Mg, Ca, Al, Si en 'n kern wat ryk aan metale soos Fe en Ni is.

Die siderofiele elemente (Os, Ir, Ru, Rh, Pt, Pd, Au, Re) wat gewoonlik met HSE (Highly Siderophile Elements) aangedui word en die chalkofiele elemente (SCE; Strongly Chalcofile Elements) (S, Se, Te) word hoofsaaklik in die kern opgeneem.[3]

Van die meteoriete wat vandag die Aarde bereik het hierdie differensiasie ondergaan, soos die achondriete. Hulle lewer dikwels inligting oor later gebeurtenisse in die sonnestelsel as die 'primitiewe' chondriete.

Omtrent 20 miljoen jaar

Die proto-Aarde se kern word omtrent 4,535±0,002 miljard jaar gelede gevorm, omtrent 20 miljoen jaar ná die begin. Hierdie datering berus op 182Hf/182W-metings op meteoriete. [3] Die protoplaneet was blootgestel aan botsings met ander kleiner liggame. Goldblatt hulle stel voor om dit Tellus te noem

Hadeïkum

Paleohadeïkum

Hefestium

Omtrent 55 miljoen jaar;
Artistieke weergawe van die vroeë Aarde en Maan.

Volgens die Goldblatt-indeling begin die eintlike Hadeïkum met 'n groot katastrofe. Die proto-Aarde (Tellus) word deur 'n ander planetesimaal getref wat Theia genoem word. Die tydstip word op 4,50±0,01 miljard jaar gelede geraam, (35±12 miljoen jaar ná die vorming van die protoplaneet).[3] Hierdie gebeurtenis was katastrofies en lei tot die totale versmelting van die twee protoplanete. Aanvanklik is dit dalk 'n superkritiese gaswolk met 'n hoë druk en hoë temperatuur. Dit blyk veral uit die relatiewe voorkoms van kalium-41. [5] Afkoeling lei opnuut tot differensiasie en die vorming van die Aarde en die Maan. Die afstand tussen die Aarde en sy satelliet was aanvanklik baie kleiner as vandag. Dit word op 21 keer die aardstraal geraam, pleks van omtrent 60. [6]

Aanvanklik het die nuwe planeet Aarde 'n gesmelte oppervlak gehad, maar ná sowat 10 miljoen jaar het dit 'n vaste kors gekry.[4]

Omtrent 85 miljoen jaar

Die Aarde se kors word verryk met HSE-elemente. Dit word die late veneer (die laat vernis) genoem. Dit weerspieël dalk 'n laat meteorietreën en word afgelei van die voorkoms van HSE in die aardkors wat sowat 200 keer groter is as verwag word. erdie hipotese is nogtans taamlik omstrede.[3]

Jakobium

Omtrent 150 miljoen jaar

Die Jakobium is vernoem na die Jack Hills van Australië waar van die oudste gesteentes gevind is.[4]

Omtrent 200 miljoen jaar

Oseane het begin om te vorm toe die temperatuur van die atmosfeer tot 350 oC afgekoel het, omdat die druk van die atmosfeer dalk baie hoog was en dit hoofsaaklik uit CO2 bestaan het. Hoe lank hierdie heet broeikas bestaan het is nie duidelik nie, maar dit word op 100 miljoen jaar beraam omdat eers die subduksie van karbonate die koolstofdioksied uit die atmosfeer verwyder het.[7] Volgens die berekenings van Sleep (2007) het omtrent 4,37 miljard jaar gelede (200 miljoen jaar ná die begin) reeds gebiede bestaan wat se oseaanwater koel genoeg wat om lewe 'n kans te bied. Die soutgehalte was waarskynlik amper twee keer so hoog as vandag omdat sout nog nie as steensout begrawe was, maar dit is moeilik om te bepaal. [7]

Die atmosfeer van die afkoelende planeet was reduserend van aard, maar dit het stadig verander omdat vulkanisme waterstof en sy verbindings met koolstof, stikstof en suurstof vrystel en hulle ongehinderd die boonste lae van die atmosfeer kon bereik. Waterstof is -saam met helium- lig genoeg om uit die planeet se swaartekragveld te ontsnap. Hierdie proses se spoed moet duisend keer so hoog gewees het as dit vandag is en geleid tot 'n hoër relatiewe voorkoms van suurstof. Dit het die oksidasie van elemente in hulle lae oksidasietoestande in die gesteentes en hulle verwering en erosie moontlik gemaak. Hierdie proses het tot ver in die Argeïkum voortgeduur.[8]

Indien die fugasiteit (aktiwiteit) van suurstof bepaal sou word deur die yster-wüstiet-buffer van die Aarde se magma, sou 'n mens 'n atmosfeer van CH4, H2, H2S, NH3 en CO verwag. Indien die Aarde se magma egter deur die fayaliet-magnetiet-kwarts-buffer bepaal sou word, sou die atmosfeer uit H2O, CO2, SO2 en N2 bestaan het. Dit is nouer aan die atmosfeer van vandag verwant, behalwe dat dit geen vrye suurstof bevat het nie. Daar is aanwysings dat die laaste reeds in die Hadeïkum die geval was.[9]

Mesohadeïkum

Kanadium

Omtrent 255 miljoen jaar

Hierdie periode is vernoem na Kanada. Insluitsels in die Nuvvuagittuq-groensteengordel in Quebec word as die oudste steeds bestaande (reste van) gesteentes van die Aarde beskou.[10] O'Neil et al. (2009) het gesteentes beskrewe uit die omgewing van die Hudsonbaai wat 'n leeftyd van 4,28 miljard jaar lewer. Hierdie waarde word verkry deur vergelyking van die voorkoms van die stabiele isotoop neodimium-142 (die dogter van die uitgestorwe isotoop samarium-146) met neodimium-144. 146Sm het 'n halfleeftyd van 103 miljoen jaar. Hierdie verskille in 142Nd/144Nd-isotoopverhouding kan slegs ontstaan het toe 146Sm nog voorgekom het.

Hierdie resultate wys dat in die Hadeïkum waarskynlik reeds vaste korsgesteentes bestaan het, maar dat hulle later weer vernietig is.[7] Hierdie bewering is nogtans omstrede omdat nie duidelik is nie of dit die ouderdom van die gesteentes betref of van die gesmelte magma waaruit hulle ontstaan het.[11]

Prokrustium

Omtrent 350 miljoen jaar

Die tydperk is na Procrustes vernoem, die bandiet uit die Griekse mitologie wat arme en bene van reisigers uitgestrek of afgehak het om hulle in sy bed te laat pas. Alle lewe het daardeur is sy bed gepas. Daar word gedink dat die lewe reeds inhierdie tyd op Aarde teenwoordig was, moontlik selfs eerder (in die Jakobium). Minerale soos schreibersiet wat uit ystermeteoriete stam het dalk 'n groot rol gespeel. Dit het die element fosfor gelewer en dalk die formosereakie gekataliseer.[12]

Die 87Sr/86Sr - isotoopverhouding van apatiet-insluitsels in zirkone uit die Argeïkum van Nuvvauagittuq in Kanada wys dat 'n bekken met 'n hoë Rb/Sr-verhouding 4,2 miljard jaar gelede (omtrent die begin van die Prokrustium) seker reeds gevorm moet het. Dit wys dat daar toe reeds 'n aardkors is wat wissel van mafies tot sterk kieselhoudend. Moontlik stam dit self van 4,4 miljard jaar gelede (omtrent die begin van die jakobium).[13]

Neohadeïkum

Acastium

Omtrent 450 miljoen jaar

Die oudste gesteentes van Acasta stam uit hierdie tydperk.

Prometium

Omtrent 550 miljoen jaar
Artistieke weergawe van die Maan tydens die bombardement en vandag

Die maan word getref deur die laat swaar bombardement wat tot die vorming van die inslagkraters op die maan lei. Dit word afgelei van die U/Th/Pb en Rb/Sr-metings op die maangesteentes wat die Apollo 17-tog meegebring het. Hierdie gegewens wys 'n tydperk van meteorietbombardemente van 4,0-3,8 miljard jaar gelede. Omdat die Aarde se swaartekrag groter as die Maan s'n is, sou die Aarde aan 'n groter bombardement blootgestel gewees het, en inslae van liggame so groot as Ceres (deursnee 900 km) ondergaan het, maar bewyse hiervoor ontbreek.[3] Sulke inslae sal waarskynlik 'n deel van oseane weer laat verdamp en dit is nie duidelik of dit die lewe wat dalk reeds bestaan het oorleef het of dat dit uitgewis is en later in die Argeïkum opnuut verskyn het. Die oorsaak van die bombardement is moontlik veranderings in die stabiele wentelbane van Jupiter en Saturnus wat glo omtrent 3,9 miljard jaar gelede het plaasgevind en die bane van asteroïede versteur het, maar beter navorsing op die Maan is nodig om dit te bevestig. [7]

Oor die grens tussen die Hadeïkum en die Argeïkum bestaan geen ooreenstemming nie. Sommige wil dit veslê op die tyd dat lewe verskyn het, maar dit is moeilik om vas te stel; Goldblatt hulle wil liewer 'n later grens om die laat bombarderment geheel aan een tydperk, die Hadeïkum toe te wys, pleks van dit oor Hadeïkum en Argeïkum te verdeel. [4]

Verwysings

  1. Earth's Oldest Rocks Martin J. van Kranendonk, Vickie Bennett, Hugh R.H. Smithies Elsevier, 2007, ISBN 0-08-055247-1, ISBN 978-0-08-055247-7
  2. Core formation, Hadean mattes and the timescale of Earth accretion Lead Research Organisation: University of Oxford Bernard John Wood 2009-2012
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 Siderophile and chalcophile elements in the Archean mantle-crust system. Chunhui Li Proefskrif November 2016 Freie Universität Berlin
  4. 4,0 4,1 4,2 4,3 The Eons of Chaos and Hades C. Goldblatt, K.J. Zahnle, N.H. Sleep, E.G. Nisbet Solid Earth 1, 1-3, 2010
  5. Moon's birth may have vaporaized most of Earth, study shows. Charles Q. Choi www.space.com
  6. Lunar and Planetary Institute
  7. 7,0 7,1 7,2 7,3 The Hadean-Archaean Environment Norman H. Sleep Cold Spring Harb Perspect Biol. 2010 Jun; 2(6): a002527. doi: 10.1101/cshperspect.a002527
  8. Evolution of the Atmosphere During the Hadean and Archean George H. Shaw Earth's Early Atmosphere and Oceans, and The Origin of Life. SpringerBriefs in Earth Sciences. Springer, Cham; ISBN 978-3-319-21971-4
  9. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere Dustin Trail, E. Bruce Watson, Nicholas D. Tailby Nature volume 480, pages 79–82 (01 December 2011)
  10. Geochronology, Dating, and Precambrian Time: The Beginning of the World as We Know It Rafferty, John P, Britannica Educational Publishing, 2010, ISBN 1-61530-195-X, ISBN 978-1-61530-195-9 bls. 160
  11. New Scientist
  12. Schreibersite: an effective catalyst in the formose reaction network S Pallmann et al. 2018 New J. Phys. 20 055003
  13. Potassic, high-silica Hadean crust Patrick Boehnke, Elizabeth A. Bell, Thomas Stephan, Reto Trappitsch, C. Brenhin Keller, Olivia S. Pardo, Andrew M. Davis, T. Mark Harrison, and Michael J. Pellin PNAS Junie 2018


  Geologiese eons:     Hadeïese Eon     Argeïese Eon     Proterosoïese Eon     Fanerosoïese Eon