Analise

in Wikipedia, die vrye ensiklopedie
Spring na: navigasie, soek

Analise, ook algemeen bekend as calculus (Latyns, 'n klein klippie wat gebruik was om te tel), is 'n afdeling van wiskunde wat fokus op limiete, funksies, afgeleides, integrale en oneindige reekse. Dit is gebou op twee komplementêre hoofkonsepte (differensiaalanalise en integraalanalise), wat met mekaar in verband gebring word deur die fundamentele stelling van calculus.

Analise is die studie van verandering, in dieselfde opsig as wat meetkunde die studie van vorme en algebra die studie van vergelykings is. 'n Studie van analise stel 'n mens in staat om meer gevorderde studievelde in wiskunde, naamlik wiskundige analise, wat op die studie van limiete en funksies berus, te bestudeer. Analise ervaar wye toepassing in wetenskap, ekonomie en ingenieurswese en kan menige probleme oplos waarvoor tradisionele algebra ontoereikend is.

Beginsels[wysig]

Limiete en die oneindig klein[wysig]

Analise word gewoonlik ontwikkel deur baie klein hoeveelhede te manipuleer. Die eerste metode om hierdie mee te bewerkstellig was, histories, deur die gebruik van infinitesimale. Hierdie "voorwerpe", wat aangewend word asof hulle getalle is wat bloot "oneindig klein" is. 'n Infinitesimale getal dx sou groter as 0 wees, maar kleiner as enige getal in die ry

1, \frac{1}{2}, \frac{1}{3}, \ldots

en minder as enige positiewe reële getal. Enige heelgetalveelvoud van 'n infinitesimaal is steeds oneindig klein, m.a.w. infinitesimale gehoorskap nie die Archimediese eienskap nie.

Vanuit hierdie oogpunt, is analise 'n versameling tegnieke wat gemoeid is op die manipulering van oneindige klein getalle. Hierdie benadering het egter teen die einde van die 19de eeu in onbruik verval, omdat dit moeilik was om die idee van 'n infinitesimaal nougeset te definieer. Ten spyte hiervan is die konsep weer in die 20ste eeu in die lewe geroep met die inlywing van nie-standaard analise en egalige infinitesimale analise, wat die weg gebaan het vir wiskundig nougesette manipulering van infinitesimale.

Infinitesimale is tydens die 19de eeu vervang deur limiete. Limiete beskryf die waarde van 'n wiskundige funksie by 'n sekere punt "invoer" in terme van waardes by "invoere" wat in die omliggende area is. Hulle beskryf funksiegedrag op 'n baie klein skaal, maar gebruik die gewone reële getalsisteem.

In hierdie opsig is analise 'n versameling van tegnieke om sekere limiete te manipuleer. Infinitesimale word vervang deur baie klein getalle, en die oneindige klein gedrag van 'n funksie word gevind deur die beperkende gedrag vir toenemend kleiner getalle te neem. Limiete is maklik om op 'n nougesette basis te sit en om hierdie rede word hulle gewoonlik beskou as die standaardbenadering tot analise.

Differensiaalanalise[wysig]

Raaklyn by (x; f(x)). Die afgeleide f′(x) van 'n kurwe by 'n punt is die gradiënt (verandering in funksiewaarde oor invoerwaarde) van die raaklyn aan die kurwe by daai punt.

Differensiaalanalise is die studie van die definisie, eienskappe en toepassings van die afgeleide van 'n funksie. Die proses waardeur die afgeleide gevind word, is differensiasie. Gegee 'n funksie en 'n punt in sy definisieversameling, dan beskryf die afgeleide by daardie punt die klein-skaal gedrag van die funksie naby daardie punt. Deur die afgeleide van 'n funksie by elke punt in sy definiesieversameling te vind, word dit moontlik om 'n nuwe funksie, genaamd die afgeleide funksie, te kry. In wiskundige jargon is die afgeleide 'n lineêre operator wat 'n funksie ingevoer word en 'n tweede funksie uitvoer.

Die algemeenste simbool vir 'n afgeleide is die apostroofagtige merk genaamd priem. Die afgeleide van die funksie f is dus f′. Byvoorbeeld, as f(x) = x2 die kwadraatfunksie waarvan die afgeleide die verdubbelingsfunksie is, kan die afgeleide met die volgende notasie aangedui word: f′(x) = 2x.

As die invoerwaarde tyd is, verteenwoordig die afgeleide veranderint met betrekking tot tot. Byvoorbeeld, as f a funksie is wat tyd neem as invoer en die posisie van 'n bal by 'n sekere tydstip as uitvoer gee, verteenwoordig die afgeleide van f hoe die posisie met betrekking tot tyd verander, d.w.s. die snelheid van die bal.

As die funksie lineêr is (m.a.w. die grafiek van die funksie is 'n reguitlyn), kan die funksie geskryf word as y = mx + b, waar:

m= {\mbox{verandering in } y \over \mbox{verandering in } x} = {\Delta y \over{\Delta x}}.

Dit gee die presies waarde van die gradiënt van 'n reguitlyn. As die grafiek van die funksie egter nie 'n reguitlyn is nie, sal die verandering in y gedeel deur die verandering in x afwissel. Afgeleides verleen 'n presiese betekenis tot die idee van verandering in uitvoer met betrekking tot verandering in invoer. Om konkreet te wees, laat f 'n funksie wees, en stel 'n punt a in die definisieversameling van f vas. (a; f(a)) is 'n punt op die grafiek van die funksie. As h 'n getal baie naby aan nul is, dan is a + h 'n getal baie naby aan a. Dus is (a + h; f(a + h)) baie naby aan (a; f(a)). Die gradiënt tussen hierdie twee punte is:

m = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}.

Hierdie uitdrukking word genoem 'n differensiekwosiënt. 'n Lyn deur twee punte op 'n kurwe word genoem 'n snylyn, so m is die gradiënt van die snylyn tussen (a; f(a)) en (a + h, f(a + h)). Die snylyn is net 'n benadering tot die gedrag van die funksie by die punt a, omdat dit nie rekening hou van wat tussen a en a + h met die funksie gebeur nie. Verder is dit ook onmoontlik om uit te vind wat die gedrag by a is deur h gelyk te stel aan nul, omdat dit deling deur nul noodsaak, wat ontoelaatbaar is. Die afgeleide is dus gedefinieer deur die limiet te neem soos h streef na nul, wat beteken dat dit die gedrag van f vir alle klein waardes van h oorweeg en 'n bestendige waarde ontgin vir die geval waar h gelyk is aan nul:

\lim_{h \to 0}{f(a+h) - f(a)\over{h}}.

Meetkundig gesproke is die afgeleide die gradiënt van die raaklyn tot die grafiek van f by a. Die raaklyn is 'n limiet van snylyne net soos die afgeleide 'n limiet van differensiekwosiënte is. Om hierdie rede word die afgeleide soms die gradiënt van die funksie f genoem.

Hier is 'n spesifieke voorbeeld -- die afgeleide van die kwadraatsfunksie by invoer 3. Laat f(x) = x2 die kwadraatsfunksie wees.


\begin{align}f'(3) &=\lim_{h \to 0}{(3+h)^2 - 9\over{h}} \\
&=\lim_{h \to 0}{9 + 6h + h^2 - 9\over{h}}  \\
&=\lim_{h \to 0}{6h + h^2\over{h}} \\
&=\lim_{h \to 0} (6 + h) \\
&= 6.
\end{align}

Die gradiënt van die raaklyn tot 'n kwadreringsfunksie by die punt (3;9) is 6. D.w.s. die funksiewaarde vermeerder ses keer vinniger as die invoerwaarde. Die limietproses wat sopas beskryf is kan toegepas word vir enige punt in die definisieversameling van die kwadreringsfunksie. Dit definieer die afgeleide funksie van die kwadreringsfunksie.

Leibniznotasie[wysig]

'n Algemene notasie vir die afgeleide in die voorbeeld hier bo is:


\begin{align}
y=x^2 \\
\frac{dy}{dx}=2x.
\end{align}

Hierdie notasie is die eerste keer deur Leibniz gebruik en dra dus sy naam.

In 'n benarderomg gebaseer op limiete moet die simbool dy/dx nie geïnterpreteer word as die kwosiënt van die twee getalle nie, maar as beknopte voorstelling van die limiet wat hier bo uitgewerk is. Leibniz se oorspronklike bedoeling was egter dat dit die kwosiënt van twee oneindig klein getalle voorstel, waar dy die infinitesimale verandering in y is wat veroorsaak word deur 'n infinitesimale verandering dx in x.

Ons kan ook aan d/dx dink as die differensiasie-operator wat 'n funksie neem as invoer en nog 'n funksie, die afgeleide, as uitvoer lewer. Byvoorbeeld:


\frac{d}{dx}(x^2)=2x.

Soos dit hier gebruik word, beteken die dx in die noemer "met betrekking tot x". Selfs as analise ontwikkel word deur limiete te gebruik in plaas van infinitesimale, is dit steeds algemeen om simbole soos dx en dy te manipuleer asof hulle regte getalle is en, hoewel dit moontlik is om sulke manipulering te vermy, is dit soms gerieflik om die notasies van sekere operasies so uit te druk.


Integraalanalise[wysig]

Fundamentele stelling[wysig]

Die fundamentele stelling van die calculus stel dat differensiasie en integrasie inverse operasies is. Om meer presies te wees, dit beskryf die verband tussen die waardes van anti-afgeleides en bepaalde integrale. Omdat dit gewoonlik makliker is om 'n anti-afgeleide te bereken as wat dit is om die definisie van 'n bepaalde integraal toe te pas, verskaf die fundamentele stelling van calculus 'n praktiese metode om 'n bepaalde integraal te bereken.

Die fundamentele stelling van calculus stel: As 'n funksie f kontinu is oor die interval [a,b] en as F 'n funksie is waarvan die afgeleide f is oor die interval (a, b), dan

\int_{a}^{b} f(x)\,dx = F(b) - F(a).

Verder, vir elke x in die interval (a, b),

\frac{d}{dx}\int_a^x f(t)\, dt = f(x).

Hierdie besef, wat deur beide Newton en Leibniz gemaak is, was onmisbaar in die ontsaglike vermenigvuldiging van analitiese resultate wat gelewer is nadat hulle werk bekend geword het. Die fundamentele stelling verskaf 'n algebraïese metode om verskeie bepaalde integrale te bereken — sonder om limietprosesse (soos Riemann-somme) toe te pas — deur formules vir anti-afgeleides te vind.

Sien ook[wysig]