Markovketting

in Wikipedia, die vrye ensiklopedie
Spring na: navigasie, soek
'n Tweetoestand-Markovketting met alle oorgangswaarskynlikhede aangedui

'n Markovketting, vernoem na Andrei Markov, is 'n wiskundige stelsel waarin 'n oorgang plaasvind van een toestand na 'n ander, in 'n eindige, of minstens aftelbare getal moontlike toestande, op 'n aaneengekettingde wyse. Dit is 'n stogastiese proses wat oor die Markov-eienskap beskik, naamlik dat die volgende toestand slegs afhang van die huidige toestand en nie van die verlede nie. Markovkettings het baie toepassings as statistiese modelle van werklike prosesse.

'n Gerigde grafiekvoorstelling van 'n Markovketting, wat die toestand van finansiële markte sou voorstel (die waarskynlikhede is denkbeeldig)

Voorbeeld[wysig]

Eenvoudige voorbeelde word in die figure aan die regterkant uitgebeeld, wat gebruik maak van 'n gerigde grafieke om die toestand-oorgange aan te dui. Die toestande by die tweede grafiek stem ooreen met 'n ekonomie in 'n bulmark, beermark, of 'n resessie, tydens 'n gegewe week. Volgens die voorstelling het 'n bulmark 'n 90% kans om weer deur 'n bulmark opgevolg te word, 'n 7.5% kans om deur 'n beermark gevolg te word, en 'n 2,5% kans om deur 'n resessie opgevolg te word. Uit hierdie figuur is dit byvoorbeeld moontlik om die langtermyn tydbreuk te bereken, waarin die ekonomie in resessie sal verkeer, of die gemiddelde tydperk wat dit sal neem om van resessie na 'n bulmark te gaan.

'n Deeglike ontwikkeling met baie voorbeelde kan gevind word in die aanlyn-monografie Meyn & Tweedie 2005.[1] Die addendum van Meyn 2007,[2] wat ook aanlyn beskikbaar is, bevat 'n verkorte Meyn & Tweedie.

'n Eindigetoestandoutomaat kan gebruik word as 'n voorstelling van 'n Markovketting. Gegewe 'n reeks van onafhanklike en identiesverspreide insetseine (byvoorbeeld simbole uit 'n binêre alfabet, soos beslis deur die werp van 'n munt), met die outomaat in toestand y op tydstip n, dan is die waarskynlikheid dat dit na toestand x beweeg op tydstip n + 1, slegs afhanklik van die huidige toestand.

Kyk ook[wysig]

Verwysings[wysig]

  1. S. P. Meyn en R.L. Tweedie, 2005. Markov Chains and Stochastic Stability. Tweede uitgawe op hande, Cambridge University Press, 2008.
  2. S.P. Meyn, 2007. Control Techniques for Complex Networks, Cambridge University Press, 2007.