Abiogenese: Verskil tussen weergawes

in Wikipedia, die vrye ensiklopedie
Content deleted Content added
bronne
Etikette: Visuele teksverwerker Selfoonbydrae Wysiging op selfoonwerf Gevorderde mobiele wysiging
uitgebrei
Lyn 1: Lyn 1:
[[Lêer:Champagne vent white smokers.jpg|duimnael| Die vroegste bekende lewensvorme is gefossileerde mikroörganismes, gevind in hidrotermiese ventilasie-neerslae, wat moontlik so vroeg as 4,28 miljard jaar gelede geleef het, relatief kort na die vorming van die oseane 4,41 miljard jaar gelede, en nie lank na die vorming van die Aarde 4,54 miljard jaar gelede.{{R|NAT-20170301|NYT-20170301}}]]
'''Abiogenese''' is Huxley se benaming vir spontane generasie.
:''Moet nie met [[Biogenese]] verwar word nie.''


In [[biologie]] is '''abiogenese''' of '''die oorsprong van lewe'''{{sfn|Oparin|1938}}{{R|Pereto}} die natuurlike proses waardeur lewe, soos eenvoudige [[organiese verbinding]]s, uit nie-lewende materie ontstaan het.{{sfn|Oparin|1938|p=vi}}{{R|Pereto|Warmflash}}{{sfn|Yarus|2010|p=47}} Alhoewel die besonderhede van hierdie proses nog onbekend is, is die heersende wetenskaplike hipotese dat die oorgang van nie-lewende na lewende entiteite nie 'n enkele gebeurtenis was nie, maar 'n evolusionêre proses van toenemende kompleksiteit wat molekulêre selfreplikasie, selfsamestelling, outokatalise, en die opkoms van selmembrane behels het.{{R|Witzany|AB-20141208}} Alhoewel die voorkoms van abiogenese nie omstrede is onder wetenskaplikes nie, word die moontlike meganismes daarvan swak verstaan. Daar is verskeie beginsels en hipoteses vir hoe abiogenese kon plaasgevind het.{{R|Levinson}}
A (sonder) + bio (lewe) + genese – die idee dat lewende organismes op een of ander manier vanuit nie-lewende materiaal geproduseer kan word.


Die studie van abiogenese het die doel om vas te stel hoe chemiese reaksies aanleiding gegee het tot lewe onder toestande wat opvallend verskil van dié op die Aarde vandag.{{sfn|Voet|Voet|2004|p=29}} Dit gebruik hoofsaaklik idees uit biologie, chemie en geofisika,{{sfn|Dyson|1999}} met meer onlangse benaderings wat 'n sintese van al drie probeer maak sowel as [[astrobiologie]], [[biochemie]], [[biofisika]], [[geochemie]], [[molekulêre biologie]], oseanografie en [[paleontologie]].{{R|Davies}}
Pasteur en Virchow het dit tot 'n baie groot mate gediskrediteer deur die wet van [[Biogenese]].

Lewe funksioneer deur die gespesialiseerde chemie van [[koolstof]] en [[water]], en bou grootliks op vier sleutelfamilies van chemikalieë: [[lipied]]e (selmembrane), [[Koolhidraat|koolhidrate]] ([[suiker]]s, [[sellulose]]), [[Aminosuur|aminosure]] ([[proteïen]]metabolisme) en nukleïensure ([[DNS]] en [[RNS]]). Enige suksesvolle teorie van abiogenese moet die oorsprong en interaksies van hierdie klasse molekules verduidelik.{{R|Ward}} Baie benaderings tot abiogenese ondersoek hoe selfrepliserende molekules, of hul komponente, ontstaan ​​het. Navorsers dink oor die algemeen dat die huidige lewe van 'n RNS-wêreld begin het. Die skrywers van "The Origin of an RNA world" sê "Die voorstel dat lewe op aarde uit 'n RNS-wêreld ontstaan het, word algemeen aanvaar."{{R|RNA}} Daar is ander selfrepliserende molekules wat RNS moontlik voorafgegaan het en ook kandidate kan wees.{{R|Robertson2012|Cech2012}}

Die klassieke Miller-Urey-eksperiment van 1952 en soortgelyke navorsing het getoon dat die meeste [[Aminosuur|aminosure]], die chemiese bestanddele van die proteïene wat in alle lewende organismes gebruik word, uit anorganiese verbindings gesintetiseer kan word onder toestande wat bedoel is om dié van die vroeë Aarde te herhaal. Verskeie eksterne energiebronne kan hierdie reaksies veroorsaak het, insluitend [[weerlig]] en bestraling. Ander benaderings (bv. die "metabolisme-eerste"-hipoteses) fokus daarop om te verstaan ​​hoe [[Katalisator|katalise]] in chemiese stelsels op die vroeë Aarde die voorlopermolekules kon verskaf het wat nodig is vir selfreplikasie.{{R|Ralser 2014}}

Die Aarde bly die enigste plek in die heelal wat bekend is om lewe te huisves,{{R|NASA-1990}}{{sfn|Altermann|2009|p=xvii}} en fossielbewyse van die Aarde lig die meeste studies van abiogenese in. Die ouderdom van die Aarde is 4,54 miljard jaar;{{R|USGS1997|Manhesa}}{{sfn|Dalrymple|2001|pp=205–221}} die vroegste onbetwiste bewyse van lewe op Aarde dateer van ten minste 3,5 miljard jare gelede.{{R|Origin1|Origin2}}{{sfn|Raven|Johnson|2002|p=68}} In 2017 is moontlike bewyse van vroeë lewe op land gevind in 3,48 miljard jaar oue geiseriet en ander verwante mineraalafsettings (dikwels gevind rondom warmwaterbronne en [[Geiser (bron)|geisers]]) wat in die [[Pilbara-kraton]] van Wes-[[Australië]] ontbloot is.{{R|PO-20170509|NC-20170509|PNAS-2017|WU-20171218}} Ander ontdekkings dui daarop dat lewe moontlik selfs vroeër op Aarde verskyn het. Mikrofossiele (gefossileerde mikroörganismes) binne hidrotermiese ventilasie-neerslae, gevind in rotse in [[Quebec]], [[Kanada]], wat in 2017 gedateer is tot tussen 3,77 en 4,28 miljard jaar oud mag die oudste rekord van lewe op Aarde huisves. Dit was kort ná die vorming van die oseaan 4,4 miljard jare gelede.{{R|NAT-20170301|NYT-20170301|BBC-20170301|4.3b oldest|Deutsche Welle}}

Die [[NASA]]-strategie oor abiogenese poog om interaksies, intermediêre strukture en funksies, energiebronne en omgewingsfaktore te identifiseer wat bygedra het tot die diversiteit, seleksie en replikasie van evolueerbare makromolekulêre stelsels. Die koms van polimere wat kon repliseer, genetiese inligting stoor en eienskappe toon onderhewig aan seleksie was waarskynlik 'n kritieke stap in die opkoms van prebiotiese chemiese evolusie.{{R|NASA strategy 2015}}


== Kyk ook ==
== Kyk ook ==
* [[Biogenese]]
* [[Biogenese]]
* [[Biogenetiese wet]]
* [[Biogenetiese wet]]
* [[Geskiedenis van die Aarde#Oorsprong van lewe]]



== Bronne ==
== Bronne ==
* {{cite book |last=Altermann |first=Wladyslaw |year=2009 |chapter=Introduction: A Roadmap to Fata Morgana? |editor1-last=Seckbach |editor1-first=Joseph |editor2-last=Walsh |editor2-first=Maud |title=From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures |series=Cellular Origin, Life in Extreme Habitats and Astrobiology |volume=12 |location=Dordrecht, the Netherlands; London |publisher=Springer Science+Business Media |isbn=978-1-4020-8836-0 |lccn=2008933212 |language=en}}

* {{cite book |last=Dalrymple |first=G. Brent |year=2001 |chapter=The age of the Earth in the twentieth century: a problem (mostly) solved |editor1-last=Lewis |editor1-first=C.L.E. |editor2-last=Knell |editor2-first=S.J. |title=The Age of the Earth: from 4004 BC to AD 2002 |journal=Geological Society of London, Special Publications |series=Geological Society Special Publication |location=London |publisher=Geological Society of London |volume=190 |issue=1 |pages=205–221 |bibcode=2001GSLSP.190..205D |doi=10.1144/gsl.sp.2001.190.01.14 |isbn=978-1-86239-093-5 |s2cid=130092094 |lccn=2003464816 |oclc=48570033 |language=en}}
* Iris Fry: ''The Emergence of Life on Earth: A Historical and Scientific Overview.'' Rutgers University Press, 2000, ISBN 0-8135-2740-6.
* {{cite book |last=Dyson |first=Freeman |year=1999 |title=Origins of Life |edition=Revised |location=Cambridge, UK; New York |publisher=Cambridge University Press |isbn=978-0-521-62668-2 |lccn=99021079 | language=en}}
* {{cite book |last1=Fry |first1=Iris | title=The emergence of life on Earth : a historical and scientific overview |publisher=Rutgers University Press | publication-place=New Brunswick, N.J. | isbn=0-8135-2739-2 | oclc=41090659 | language=en}}
* Leslie Orgel|Leslie E. Orgel: ''Prebiotic Chemistry and the Origin of the RNA World.'' In: ''Critical Reviews in Biochemistry and Molecular Biology.'' Band 39, 2004, S. 99–123, [[doi:10.1080/10409230490460765]] [http://www.d.umn.edu/~pschoff/documents/OrgelRNAWorld.pdf (online)]
* Leslie Orgel|Leslie E. Orgel: ''Prebiotic Chemistry and the Origin of the RNA World.'' In: ''Critical Reviews in Biochemistry and Molecular Biology.'' Band 39, 2004, S. 99–123, [[doi:10.1080/10409230490460765]] [http://www.d.umn.edu/~pschoff/documents/OrgelRNAWorld.pdf (online)]
* {{cite book |last1=Oparin |first1=Aleksandr Ivanovich |translator1-last=Morgulis |translator1-first=Sergius |year=1938 |title=The Origin of Life |url=https://books.google.com/books?id=Jv8psJCtI0gC |series=Phoenix Edition Series |edition=2de |location=Mineola, New York |publisher=Courier Corporation |publication-date=2003 |isbn=978-0486495224 |language=en}}
* {{cite book |last1=Voet |first1=Donald |last2=Voet |first2=Judith G. |year=2004 |title=Biochemistry |volume=1 |edition=3de |location=New York |publisher=John Wiley & Sons |isbn=978-0-471-19350-0 |lccn=2003269978 |language=en}}
* {{cite book |last=Yarus |first=Michael |year=2010 |title=Life from an RNA World: The Ancestor Within |location=Cambridge, MA |publisher=Harvard University Press |isbn=978-0-674-05075-4 |lccn=2009044011 |language=en}}

== Verwysings ==
{{verwysings|30em|verwysings=
<ref name="4.3b oldest">{{cite news |last1=Dunham |first1=Will |title=Canadian bacteria-like fossils called oldest evidence of life |url=http://ca.reuters.com/article/topNews/idCAKBN16858B?sp=true |date=1 Maart 2017 |work=Reuters |access-date=14 April 2022 |url-status=live |archive-url=https://web.archive.org/web/20170302114728/http://ca.reuters.com/article/topNews/idCAKBN16858B?sp=true |archive-date=2 Maart 2017 |language=en}}</ref>

<ref name="AB-20141208">{{cite web |last=Howell |first=Elizabeth |title=How Did Life Become Complex, And Could It Happen Beyond Earth? |url=https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |date=8 Desember 2014 |work=Astrobiology Magazine |access-date=14 April 2022 |url-status=dead |archive-url=https://web.archive.org/web/20180215024231/https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |archive-date=15 Februarie 2018 |language=en}}</ref>

<ref name="BBC-20170301">{{Cite news |last=Ghosh |first=Pallab |title=Earliest evidence of life on Earth found |url=https://www.bbc.co.uk/news/science-environment-39117523 |date=1 Maart 2017 |access-date=14 April 2022 |url-status=live |archive-url=https://web.archive.org/web/20170302002134/http://www.bbc.co.uk/news/science-environment-39117523 |archive-date=2 Maart 2017|work=BBC News |language=en}}</ref>

<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |date=Julie 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585 |language=en}}</ref>

<ref name="Davies">{{cite book |last1=Davies |first1=Paul |date=1998 |title=The Fifth Miracle, Search for the origin and meaning of life |publisher=Penguin |bibcode=1998fmso.book.....D |language=en}}</ref>

<ref name="Deutsche Welle">{{cite news |title=Researchers uncover 'direct evidence' of life on Earth 4 billion years ago|url=http://dw.com/p/2YUnT |access-date=14 April 2022 |publisher=Deutsche Welle |language=en}}</ref>

<ref name="Levinson">{{Cite book |title=Rethinking evolution: the revolution that's hiding in plain sight |last=Levinson |first=Gene |publisher=World Scientific |year=2020 |isbn=978-1786347268 |url=https://rethinkingevolution.com/ |language=en}}</ref>

<ref name="Manhesa">{{cite journal |last1=Manhesa |first1=Gérard |last2=Allègre |first2=Claude J. |last3=Dupréa |first3=Bernard |last4=Hamelin |first4=Bruno |date=Mei 1980 |title=Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics |journal=Earth and Planetary Science Letters |volume=47 |issue=3 |pages=370–382 |bibcode=1980E&PSL..47..370M |doi=10.1016/0012-821X(80)90024-2 |language=en}}</ref>

<ref name="NASA-1990">{{cite journal |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf |title=Extraterrestrial Life in the Universe |last=Graham |first=Robert W. |date=Februarie 1990 |location=Lewis Research Center, Cleveland, Ohio |website=[[NASA]] |type=NASA Technical Memorandum 102363 |url-status=live |archive-url=https://web.archive.org/web/20140903100534/http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf |archive-date=3 September 2014 |language=en}}</ref>

<ref name="NASA strategy 2015">{{cite web |url=https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf |title=NASA Astrobiology Strategy |year=2015 |work=NASA |url-status=dead |archive-url=https://web.archive.org/web/20161222190306/https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf |archive-date=22 Desember 2016 |access-date=14 April 2022 |language=en}}</ref>

<ref name="NAT-20170301">{{cite journal |last1=Dodd |first1=Matthew S. |last2=Papineau |first2=Dominic |last3=Grenne |first3=Tor |last4=Slack |first4=John F. |last5=Rittner |first5=Martin |last6=Pirajno |first6=Franco |last7=O'Neil |first7=Jonathan |last8=Little |first8=Crispin T.S. |title=Evidence for early life in Earth's oldest hydrothermal vent precipitates |url=http://eprints.whiterose.ac.uk/112179/ |journal=Nature |date=1 Maart 2017 |volume=543 |issue=7643 |pages=60–64 |doi=10.1038/nature21377 |pmid=28252057 |bibcode=2017Natur.543...60D |url-status=live |archive-url=https://web.archive.org/web/20170908201821/http://eprints.whiterose.ac.uk/112179/ |archive-date=8 September 2017 |doi-access=free |language=en}}</ref>

<ref name="NC-20170509">{{cite journal |last1=Djokic |first1=Tara |last2=Van Kranendonk |first2=Martin J. |last3=Campbell |first3=Kathleen A. |last4=Walter |first4=Malcolm R. |last5=Ward |first5=Colin R. |title=Earliest signs of life on land preserved in ca. 3.5 Gao hot spring deposits |date=9 Mei 2017 |journal=Nature Communications |doi=10.1038/ncomms15263 |pmid=28486437 |pmc=5436104 |volume=8 |page=15263 |bibcode=2017NatCo...815263D |language=en}}</ref>

<ref name="NYT-20170301">{{cite news |last=Zimmer |first=Carl |title=Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest |url=https://www.nytimes.com/2017/03/01/science/earths-oldest-bacteria-fossils.html |date=1 Maart 2017 |work=The New York Times |access-date=14 April 2022 |url-status=live |archive-url=https://web.archive.org/web/20170302042424/https://www.nytimes.com/2017/03/01/science/earths-oldest-bacteria-fossils.html |archive-date=2 Maart 2017 |language=en}}</ref>

<ref name="Origin1">{{cite journal |last1=Schopf |first1=J. William |last2=Kudryavtsev |first2=Anatoliy B. |last3=Czaja |first3=Andrew D. |last4=Tripathi |first4=Abhishek B. |date=5 Oktober 2007 |title=Evidence of Archean life: Stromatolites and microfossils |journal=Precambrian Research |volume=158 |pages=141–155 |issue=3–4 |doi=10.1016/j.precamres.2007.04.009 |bibcode=2007PreR..158..141S |language=en}}</ref>

<ref name="Origin2">{{cite journal |last=Schopf |first=J. William |date=29 Junie 2006 |title=Fossil evidence of Archaean life |journal=Philosophical Transactions of the Royal Society B |volume=361 |issue=1470 |pages=869–885 |doi=10.1098/rstb.2006.1834 |pmid=16754604 |pmc=1578735 |language=en}}</ref>

<ref name="Pereto">{{cite journal |last=Peretó |first=Juli |year=2005 |title=Controversies on the origin of life |url=http://www.im.microbios.org/0801/0801023.pdf |journal=International Microbiology |volume=8 |issue=1 |pages=23–31 |pmid=15906258 |url-status=dead |archive-url=https://web.archive.org/web/20150824074726/http://www.im.microbios.org/0801/0801023.pdf |archive-date=24 Augustus 2015 |language=en}}</ref>

<ref name="PNAS-2017">{{cite journal |last1=Schopf |first1=J. William |last2=Kitajima |first2=Kouki |last3=Spicuzza |first3=Michael J. |last4=Kudryavtsev |first4=Anatolly B. |last5=Valley |first5=John W. |title=SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions |date=2017 |journal=Proceedings of the National Academy of Sciences of the United States of America |doi=10.1073/pnas.1718063115 |pmid=29255053 |pmc=5776830 |volume=115 |issue=1 |pages=53–58 |bibcode=2018PNAS..115...53S |doi-access=free |language=en}}</ref>

<ref name="PO-20170509">{{cite news |title=Oldest evidence of life on land found in 3.48-billion-year-old Australian rocks |url=https://phys.org/news/2017-05-oldest-evidence-life-billion-year-old-australian.html |date=9 May 2017 |work=Phys.org |access-date=14 April 2022 |language=en |url-status=live |archive-url=https://web.archive.org/web/20170510013721/https://phys.org/news/2017-05-oldest-evidence-life-billion-year-old-australian.html |archive-date=10 Mei 2017}}</ref>

<ref name="Ralser 2014">{{cite journal |last1=Keller |first1=Markus A. |last2=Turchyn |first2=Alexandra V. |last3=Ralser |first3=Markus |date=25 Maart 2014 |title=Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean |journal=Molecular Systems Biology |volume=10 |issue=725 |page=725 |doi=10.1002/msb.20145228 |pmc=4023395 |pmid=24771084 |language=en}}</ref>

<ref name="RNA">{{cite journal |last1=Copley |first1=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism|url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |url-status=live |journal=Bioorganic Chemistry |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |pmid=17897696 |archive-url=https://web.archive.org/web/20130905070129/http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |archive-date=5 September 2013 |access-date=8 June 2015 |quote=Die voorstel dat lewe op aarde uit 'n RNS-wêreld ontstaan het, word algemeen aanvaar. |language=en}}</ref>

<ref name="Robertson2012">{{cite journal |last1=Robertson |first1=Michael P. |last2=Joyce |first2=Gerald F. |date=Mei 2012 |title=The origins of the RNA world |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=5 |page=a003608 |doi=10.1101/cshperspect.a003608 |pmc=3331698 |pmid=20739415 |language=en}}</ref>

<ref name="USGS1997">{{cite web |url=http://pubs.usgs.gov/gip/geotime/age.html |title=Age of the Earth |date=9 Julie 2007 |publisher=United States Geological Survey |access-date=14 April 2022 |language=en |url-status=live |archive-url=https://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html |archive-date=23 Desember 2005}}</ref>

<ref name="Ward">{{cite book |author1=Ward, Peter|author2=Kirschvink, Joe |date=2015 |title=A New History of Life: the radical discoveries about the origins and evolution of life on earth |publisher=Bloomsbury Press |pages=39–40 |isbn=978-1608199105 |language=en}}</ref>

<ref name="Warmflash">{{cite journal |last1=Warmflash |first1=David |last2=Warmflash |first2=Benjamin |date=November 2005 |title=Did Life Come from Another World? |journal=Scientific American |volume=293 |issue=5 |pages=64–71 |doi=10.1038/scientificamerican1105-64 |pmid=16318028 |bibcode=2005SciAm.293e..64W |language=en}}</ref>

<ref name="Witzany">{{cite journal |url=http://www.biocommunication.at/pdf/publications/biosystems_2016.pdf |title=Crucial steps to life: From chemical reactions to code using agents |journal=BioSystems |volume=140 |pages=49–57 |doi=10.1016/j.biosystems.2015.12.007 |pmid=26723230 |year=2016 |last1=Witzany |first1=Guenther |language=en}}</ref>

<ref name="WU-20171218">{{cite web |last=Tyrell |first=Kelly April |title=Oldest fossils ever found show life on Earth began before 3.5 billion years ago |url=https://news.wisc.edu/oldest-fossils-ever-found-show-life-on-earth-began-before-3-5-billion-years-ago/ |date=18 Desember 2017 |work=University of Wisconsin-Madison |access-date=14 April 2022 }}</ref>
}}
{{Saadjie}}
{{Saadjie}}



Wysiging soos op 17:41, 14 April 2022

Die vroegste bekende lewensvorme is gefossileerde mikroörganismes, gevind in hidrotermiese ventilasie-neerslae, wat moontlik so vroeg as 4,28 miljard jaar gelede geleef het, relatief kort na die vorming van die oseane 4,41 miljard jaar gelede, en nie lank na die vorming van die Aarde 4,54 miljard jaar gelede.[1][2]
Moet nie met Biogenese verwar word nie.

In biologie is abiogenese of die oorsprong van lewe[3][4] die natuurlike proses waardeur lewe, soos eenvoudige organiese verbindings, uit nie-lewende materie ontstaan het.[5][4][6][7] Alhoewel die besonderhede van hierdie proses nog onbekend is, is die heersende wetenskaplike hipotese dat die oorgang van nie-lewende na lewende entiteite nie 'n enkele gebeurtenis was nie, maar 'n evolusionêre proses van toenemende kompleksiteit wat molekulêre selfreplikasie, selfsamestelling, outokatalise, en die opkoms van selmembrane behels het.[8][9] Alhoewel die voorkoms van abiogenese nie omstrede is onder wetenskaplikes nie, word die moontlike meganismes daarvan swak verstaan. Daar is verskeie beginsels en hipoteses vir hoe abiogenese kon plaasgevind het.[10]

Die studie van abiogenese het die doel om vas te stel hoe chemiese reaksies aanleiding gegee het tot lewe onder toestande wat opvallend verskil van dié op die Aarde vandag.[11] Dit gebruik hoofsaaklik idees uit biologie, chemie en geofisika,[12] met meer onlangse benaderings wat 'n sintese van al drie probeer maak sowel as astrobiologie, biochemie, biofisika, geochemie, molekulêre biologie, oseanografie en paleontologie.[13]

Lewe funksioneer deur die gespesialiseerde chemie van koolstof en water, en bou grootliks op vier sleutelfamilies van chemikalieë: lipiede (selmembrane), koolhidrate (suikers, sellulose), aminosure (proteïenmetabolisme) en nukleïensure (DNS en RNS). Enige suksesvolle teorie van abiogenese moet die oorsprong en interaksies van hierdie klasse molekules verduidelik.[14] Baie benaderings tot abiogenese ondersoek hoe selfrepliserende molekules, of hul komponente, ontstaan ​​het. Navorsers dink oor die algemeen dat die huidige lewe van 'n RNS-wêreld begin het. Die skrywers van "The Origin of an RNA world" sê "Die voorstel dat lewe op aarde uit 'n RNS-wêreld ontstaan het, word algemeen aanvaar."[15] Daar is ander selfrepliserende molekules wat RNS moontlik voorafgegaan het en ook kandidate kan wees.[16][17]

Die klassieke Miller-Urey-eksperiment van 1952 en soortgelyke navorsing het getoon dat die meeste aminosure, die chemiese bestanddele van die proteïene wat in alle lewende organismes gebruik word, uit anorganiese verbindings gesintetiseer kan word onder toestande wat bedoel is om dié van die vroeë Aarde te herhaal. Verskeie eksterne energiebronne kan hierdie reaksies veroorsaak het, insluitend weerlig en bestraling. Ander benaderings (bv. die "metabolisme-eerste"-hipoteses) fokus daarop om te verstaan ​​hoe katalise in chemiese stelsels op die vroeë Aarde die voorlopermolekules kon verskaf het wat nodig is vir selfreplikasie.[18]

Die Aarde bly die enigste plek in die heelal wat bekend is om lewe te huisves,[19][20] en fossielbewyse van die Aarde lig die meeste studies van abiogenese in. Die ouderdom van die Aarde is 4,54 miljard jaar;[21][22][23] die vroegste onbetwiste bewyse van lewe op Aarde dateer van ten minste 3,5 miljard jare gelede.[24][25][26] In 2017 is moontlike bewyse van vroeë lewe op land gevind in 3,48 miljard jaar oue geiseriet en ander verwante mineraalafsettings (dikwels gevind rondom warmwaterbronne en geisers) wat in die Pilbara-kraton van Wes-Australië ontbloot is.[27][28][29][30] Ander ontdekkings dui daarop dat lewe moontlik selfs vroeër op Aarde verskyn het. Mikrofossiele (gefossileerde mikroörganismes) binne hidrotermiese ventilasie-neerslae, gevind in rotse in Quebec, Kanada, wat in 2017 gedateer is tot tussen 3,77 en 4,28 miljard jaar oud mag die oudste rekord van lewe op Aarde huisves. Dit was kort ná die vorming van die oseaan 4,4 miljard jare gelede.[1][2][31][32][33]

Die NASA-strategie oor abiogenese poog om interaksies, intermediêre strukture en funksies, energiebronne en omgewingsfaktore te identifiseer wat bygedra het tot die diversiteit, seleksie en replikasie van evolueerbare makromolekulêre stelsels. Die koms van polimere wat kon repliseer, genetiese inligting stoor en eienskappe toon onderhewig aan seleksie was waarskynlik 'n kritieke stap in die opkoms van prebiotiese chemiese evolusie.[34]

Kyk ook

Bronne

  • Altermann, Wladyslaw (2009). "Introduction: A Roadmap to Fata Morgana?". In Seckbach, Joseph; Walsh, Maud (reds.). From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. Cellular Origin, Life in Extreme Habitats and Astrobiology (in Engels). Vol. 12. Dordrecht, the Netherlands; London: Springer Science+Business Media. ISBN 978-1-4020-8836-0. LCCN 2008933212.
  • Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". In Lewis, C.L.E.; Knell, S.J. (reds.). The Age of the Earth: from 4004 BC to AD 2002. pp. 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/gsl.sp.2001.190.01.14. ISBN 978-1-86239-093-5. LCCN 2003464816. OCLC 48570033. S2CID 130092094. {{cite book}}: |journal= ignored (hulp)
  • Dyson, Freeman (1999). Origins of Life (in Engels) (Revised uitg.). Cambridge, UK; New York: Cambridge University Press. ISBN 978-0-521-62668-2. LCCN 99021079.
  • Fry, Iris. The emergence of life on Earth : a historical and scientific overview (in Engels). New Brunswick, N.J.: Rutgers University Press. ISBN 0-8135-2739-2. OCLC 41090659.
  • Leslie Orgel|Leslie E. Orgel: Prebiotic Chemistry and the Origin of the RNA World. In: Critical Reviews in Biochemistry and Molecular Biology. Band 39, 2004, S. 99–123, doi:10.1080/10409230490460765 (online)
  • Oparin, Aleksandr Ivanovich (1938). The Origin of Life. Phoenix Edition Series (in Engels). Vertaal deur Morgulis, Sergius (2de uitg.). Mineola, New York: Courier Corporation (published 2003). ISBN 978-0486495224.
  • Voet, Donald; Voet, Judith G. (2004). Biochemistry (in Engels). Vol. 1 (3de uitg.). New York: John Wiley & Sons. ISBN 978-0-471-19350-0. LCCN 2003269978.
  • Yarus, Michael (2010). Life from an RNA World: The Ancestor Within (in Engels). Cambridge, MA: Harvard University Press. ISBN 978-0-674-05075-4. LCCN 2009044011.

Verwysings

  1. 1,0 1,1 Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T.S. (1 Maart 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates". Nature (in Engels). 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. Geargiveer vanaf die oorspronklike op 8 September 2017.
  2. 2,0 2,1 Zimmer, Carl (1 Maart 2017). "Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest". The New York Times (in Engels). Geargiveer vanaf die oorspronklike op 2 Maart 2017. Besoek op 14 April 2022.
  3. Oparin 1938.
  4. 4,0 4,1 Peretó, Juli (2005). "Controversies on the origin of life" (PDF). International Microbiology (in Engels). 8 (1): 23–31. PMID 15906258. Geargiveer vanaf die oorspronklike (PDF) op 24 Augustus 2015.
  5. Oparin 1938, p. vi.
  6. Warmflash, David; Warmflash, Benjamin (November 2005). "Did Life Come from Another World?". Scientific American (in Engels). 293 (5): 64–71. Bibcode:2005SciAm.293e..64W. doi:10.1038/scientificamerican1105-64. PMID 16318028.
  7. Yarus 2010, p. 47.
  8. Witzany, Guenther (2016). "Crucial steps to life: From chemical reactions to code using agents" (PDF). BioSystems (in Engels). 140: 49–57. doi:10.1016/j.biosystems.2015.12.007. PMID 26723230.
  9. Howell, Elizabeth (8 Desember 2014). "How Did Life Become Complex, And Could It Happen Beyond Earth?". Astrobiology Magazine (in Engels). Geargiveer vanaf die oorspronklike op 15 Februarie 2018. Besoek op 14 April 2022.
  10. Levinson, Gene (2020). Rethinking evolution: the revolution that's hiding in plain sight (in Engels). World Scientific. ISBN 978-1786347268.
  11. Voet & Voet 2004, p. 29.
  12. Dyson 1999.
  13. Davies, Paul (1998). The Fifth Miracle, Search for the origin and meaning of life (in Engels). Penguin. Bibcode:1998fmso.book.....D.
  14. Ward, Peter; Kirschvink, Joe (2015). A New History of Life: the radical discoveries about the origins and evolution of life on earth (in Engels). Bloomsbury Press. pp. 39–40. ISBN 978-1608199105.
  15. Copley, Shelley D.; Smith, Eric; Morowitz, Harold J. (Desember 2007). "The origin of the RNA world: Co-evolution of genes and metabolism" (PDF). Bioorganic Chemistry (in Engels). 35 (6): 430–443. doi:10.1016/j.bioorg.2007.08.001. PMID 17897696. Geargiveer (PDF) vanaf die oorspronklike op 5 September 2013. Besoek op 8 Junie 2015. Die voorstel dat lewe op aarde uit 'n RNS-wêreld ontstaan het, word algemeen aanvaar.
  16. Robertson, Michael P.; Joyce, Gerald F. (Mei 2012). "The origins of the RNA world". Cold Spring Harbor Perspectives in Biology (in Engels). 4 (5): a003608. doi:10.1101/cshperspect.a003608. PMC 3331698. PMID 20739415.
  17. Cech, Thomas R. (Julie 2012). "The RNA Worlds in Context". Cold Spring Harbor Perspectives in Biology (in Engels). 4 (7): a006742. doi:10.1101/cshperspect.a006742. PMC 3385955. PMID 21441585.
  18. Keller, Markus A.; Turchyn, Alexandra V.; Ralser, Markus (25 Maart 2014). "Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean". Molecular Systems Biology (in Engels). 10 (725): 725. doi:10.1002/msb.20145228. PMC 4023395. PMID 24771084.
  19. Graham, Robert W. (Februarie 1990). "Extraterrestrial Life in the Universe" (PDF). NASA (NASA Technical Memorandum 102363) (in Engels). Lewis Research Center, Cleveland, Ohio. Geargiveer (PDF) vanaf die oorspronklike op 3 September 2014.
  20. Altermann 2009, p. xvii.
  21. "Age of the Earth" (in Engels). United States Geological Survey. 9 Julie 2007. Geargiveer vanaf die oorspronklike op 23 Desember 2005. Besoek op 14 April 2022.
  22. Manhesa, Gérard; Allègre, Claude J.; Dupréa, Bernard; Hamelin, Bruno (Mei 1980). "Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics". Earth and Planetary Science Letters (in Engels). 47 (3): 370–382. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2.
  23. Dalrymple 2001, pp. 205–221.
  24. Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 Oktober 2007). "Evidence of Archean life: Stromatolites and microfossils". Precambrian Research (in Engels). 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009.
  25. Schopf, J. William (29 Junie 2006). "Fossil evidence of Archaean life". Philosophical Transactions of the Royal Society B (in Engels). 361 (1470): 869–885. doi:10.1098/rstb.2006.1834. PMC 1578735. PMID 16754604.
  26. Raven & Johnson 2002, p. 68.
  27. "Oldest evidence of life on land found in 3.48-billion-year-old Australian rocks". Phys.org (in Engels). 9 Mei 2017. Geargiveer vanaf die oorspronklike op 10 Mei 2017. Besoek op 14 April 2022.
  28. Djokic, Tara; Van Kranendonk, Martin J.; Campbell, Kathleen A.; Walter, Malcolm R.; Ward, Colin R. (9 Mei 2017). "Earliest signs of life on land preserved in ca. 3.5 Gao hot spring deposits". Nature Communications (in Engels). 8: 15263. Bibcode:2017NatCo...815263D. doi:10.1038/ncomms15263. PMC 5436104. PMID 28486437.
  29. Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatolly B.; Valley, John W. (2017). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". Proceedings of the National Academy of Sciences of the United States of America (in Engels). 115 (1): 53–58. Bibcode:2018PNAS..115...53S. doi:10.1073/pnas.1718063115. PMC 5776830. PMID 29255053.
  30. Tyrell, Kelly April (18 Desember 2017). "Oldest fossils ever found show life on Earth began before 3.5 billion years ago". University of Wisconsin-Madison. Besoek op 14 April 2022.
  31. Ghosh, Pallab (1 Maart 2017). "Earliest evidence of life on Earth found". BBC News (in Engels). Geargiveer vanaf die oorspronklike op 2 Maart 2017. Besoek op 14 April 2022.
  32. Dunham, Will (1 Maart 2017). "Canadian bacteria-like fossils called oldest evidence of life". Reuters (in Engels). Geargiveer vanaf die oorspronklike op 2 Maart 2017. Besoek op 14 April 2022.
  33. "Researchers uncover 'direct evidence' of life on Earth 4 billion years ago" (in Engels). Deutsche Welle. Besoek op 14 April 2022.
  34. "NASA Astrobiology Strategy" (PDF). NASA (in Engels). 2015. Geargiveer vanaf die oorspronklike (PDF) op 22 Desember 2016. Besoek op 14 April 2022.