in Wikipedia, die vrye ensiklopedie
Saam met integrasie vorm differensiasie die hoofbewerkings van kalkulus . In die onderstaande lys is f en g differensieerbare funksies van die reële getal s . c is ook 'n reële getal.
Hierdie lys van afgeleides is voldoende om enige elementêre funksie te differensieer.
(
c
f
)
′
=
c
f
′
{\displaystyle \left({cf}\right)'=cf'}
(
f
+
g
)
′
=
f
′
+
g
′
{\displaystyle \left({f+g}\right)'=f'+g'}
Produkreël
(
f
g
)
′
=
f
′
g
+
f
g
′
{\displaystyle \left({fg}\right)'=f'g+fg'}
Kwosiëntreël
(
f
g
)
′
=
f
′
g
−
f
g
′
g
2
,
g
≠
0
{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}
Kettingreël
(
f
∘
g
)
′
=
(
f
′
∘
g
)
g
′
{\displaystyle (f\circ g)'=(f'\circ g)g'}
d
d
x
c
=
0
{\displaystyle {d \over dx}c=0}
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
d
d
x
c
x
=
c
{\displaystyle {d \over dx}cx=c}
d
d
x
|
x
|
=
|
x
|
x
=
sgn
x
,
x
≠
0
{\displaystyle {d \over dx}|x|={|x| \over x}=\operatorname {sgn} x,\qquad x\neq 0}
d
d
x
x
c
=
c
x
c
−
1
met beide
x
c
en
c
x
c
−
1
gedefinieer
{\displaystyle {d \over dx}x^{c}=cx^{c-1}\qquad {\mbox{met beide }}x^{c}{\mbox{ en }}cx^{c-1}{\mbox{ gedefinieer}}}
d
d
x
(
1
x
)
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d
d
x
(
1
x
c
)
=
d
d
x
(
x
−
c
)
=
−
c
x
c
+
1
{\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-{c \over x^{c+1}}}
d
d
x
x
=
d
d
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
,
x
>
0
{\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}
d
d
x
c
x
=
c
x
ln
c
,
c
>
0
{\displaystyle {d \over dx}c^{x}={c^{x}\ln c},\qquad c>0}
d
d
x
e
x
=
e
x
{\displaystyle {d \over dx}e^{x}=e^{x}}
d
d
x
log
c
x
=
1
x
ln
c
,
c
>
0
,
c
≠
1
{\displaystyle {d \over dx}\log _{c}x={1 \over x\ln c},\qquad c>0,c\neq 1}
d
d
x
ln
x
=
1
x
,
x
>
0
{\displaystyle {d \over dx}\ln x={1 \over x},\qquad x>0}
d
d
x
ln
|
x
|
=
1
x
{\displaystyle {d \over dx}\ln |x|={1 \over x}}
d
d
x
x
x
=
x
x
(
1
+
ln
x
)
{\displaystyle {d \over dx}x^{x}=x^{x}(1+\ln x)}
d
d
x
sin
x
=
cos
x
{\displaystyle {d \over dx}\sin x=\cos x}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {d \over dx}\cos x=-\sin x}
d
d
x
tan
x
=
sec
2
x
=
1
cos
2
x
{\displaystyle {d \over dx}\tan x=\sec ^{2}x={1 \over \cos ^{2}x}}
d
d
x
sec
x
=
tan
x
sec
x
{\displaystyle {d \over dx}\sec x=\tan x\sec x}
d
d
x
cot
x
=
−
csc
2
x
=
−
1
sin
2
x
{\displaystyle {d \over dx}\cot x=-\csc ^{2}x={-1 \over \sin ^{2}x}}
d
d
x
csc
x
=
−
csc
x
cot
x
{\displaystyle {d \over dx}\csc x=-\csc x\cot x}
d
d
x
bgsin
x
=
1
1
−
x
2
{\displaystyle {d \over dx}{\mbox{bgsin}}x={1 \over {\sqrt {1-x^{2}}}}}
d
d
x
bgcos
x
=
−
1
1
−
x
2
{\displaystyle {d \over dx}{\mbox{bgcos}}x={-1 \over {\sqrt {1-x^{2}}}}}
d
d
x
bgtan
x
=
1
1
+
x
2
{\displaystyle {d \over dx}{\mbox{bgtan}}x={1 \over 1+x^{2}}}
d
d
x
bgsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}{\mbox{bgsec}}x={1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
bgcot
x
=
−
1
1
+
x
2
{\displaystyle {d \over dx}{\mbox{bgcot}}x={-1 \over 1+x^{2}}}
d
d
x
bgcsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}{\mbox{bgcsc}}x={-1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
sinh
x
=
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle {d \over dx}\sinh x=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
d
d
x
cosh
x
=
sinh
x
=
e
x
−
e
−
x
2
{\displaystyle {d \over dx}\cosh x=\sinh x={\frac {e^{x}-e^{-x}}{2}}}
d
d
x
tanh
x
=
sech
2
x
{\displaystyle {d \over dx}\tanh x=\operatorname {sech} ^{2}\,x}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {d \over dx}\,\operatorname {sech} \,x=-\tanh x\,\operatorname {sech} \,x}
d
d
x
coth
x
=
−
csch
2
x
{\displaystyle {d \over dx}\,\operatorname {coth} \,x=-\,\operatorname {csch} ^{2}\,x}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {d \over dx}\,\operatorname {csch} \,x=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
d
d
x
sinh
−
1
x
=
1
x
2
+
1
{\displaystyle {d \over dx}\,{\mbox{sinh}}^{-1}\,x={1 \over {\sqrt {x^{2}+1}}}}
d
d
x
cosh
−
1
x
=
1
x
2
−
1
{\displaystyle {d \over dx}\,{\mbox{cosh}}^{-1}\,x={1 \over {\sqrt {x^{2}-1}}}}
d
d
x
tanh
−
1
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,{\mbox{tanh}}^{-1}\,x={1 \over 1-x^{2}}}
d
d
x
sech
−
1
x
=
−
1
x
1
−
x
2
{\displaystyle {d \over dx}\,{\mbox{sech}}^{-1}\,x={-1 \over x{\sqrt {1-x^{2}}}}}
d
d
x
coth
−
1
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,{\mbox{coth}}^{-1}\,x={1 \over 1-x^{2}}}
d
d
x
csch
−
1
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {d \over dx}\,{\mbox{csch}}^{-1}\,x={-1 \over |x|{\sqrt {1+x^{2}}}}}
d
d
x
(
f
−
1
(
x
)
)
=
1
f
′
(
f
−
1
(
x
)
)
{\displaystyle {d \over dx}(f^{-1}(x))={\frac {1}{f'(f^{-1}(x))}}}
Stewart, J. (2003). Single Variable Calculus . (5th ed.). Belmont, USA: Thomson Learning.
Groenewald, G.J., Hitge, M. (2005). Analise II Studiegids vir WISK121A . Potchefstroom: Noordwes-Universiteit.
Jordan, D.W., Smith, P. (2002). Mathematical techniques: An introduction for the engineering, physical and mathematical sciences . USA: Oxford University Press.