in Wikipedia, die vrye ensiklopedie
Integrasie is een van die hoofbewerkings van kalkulus . Vir differensiasie kan die eenvoudiger dele van 'n funksie maklik gedifferensieer word, wat differensiasie dan vergemaklik, maar dit kan egter nie met integrasie gedoen word nie. Vir gevalle waar daar met komplekse funksies gewerk word, is dit makliker om 'n lys van integrale byderhand te hou.
Vir die doeleindes van hierdie lys word K as arbitrêre-integrasiekonstante gebruik.
∫
a
f
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
(
a
konstant)
{\displaystyle \int af(x)\,dx=a\int f(x)\,dx\qquad {\mbox{(}}a{\mbox{ konstant)}}\,\!}
∫
[
f
(
x
)
+
g
(
x
)
]
d
x
=
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
{\displaystyle \int [f(x)+g(x)]\,dx=\int f(x)\,dx+\int g(x)\,dx}
∫
f
(
x
)
g
(
x
)
d
x
=
f
(
x
)
∫
g
(
x
)
d
x
−
∫
[
f
′
(
x
)
(
∫
g
(
x
)
d
x
)
]
d
x
{\displaystyle \int f(x)g(x)\,dx=f(x)\int g(x)\,dx-\int \left[f'(x)\left(\int g(x)\,dx\right)\right]\,dx}
∫
[
f
(
x
)
]
n
f
′
(
x
)
d
x
=
[
f
(
x
)
]
n
+
1
n
+
1
+
K
(vir
n
≠
−
1
)
{\displaystyle \int [f(x)]^{n}f'(x)\,dx={[f(x)]^{n+1} \over n+1}+K\qquad {\mbox{(vir }}n\neq -1{\mbox{)}}\,\!}
∫
f
′
(
x
)
f
(
x
)
d
x
=
ln
|
f
(
x
)
|
+
K
{\displaystyle \int {f'(x) \over f(x)}\,dx=\ln {\left|f(x)\right|}+K}
∫
f
′
(
x
)
f
(
x
)
d
x
=
1
2
[
f
(
x
)
]
2
+
K
{\displaystyle \int {f'(x)f(x)}\,dx={1 \over 2}[f(x)]^{2}+K}
∫
d
x
=
x
+
K
{\displaystyle \int \,{\rm {d}}x=x+K}
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
K
mits
n
≠
−
1
{\displaystyle \int x^{n}\,{\rm {d}}x={\frac {x^{n+1}}{n+1}}+K\qquad {\mbox{ mits }}n\neq -1}
∫
d
x
x
=
ln
|
x
|
+
K
{\displaystyle \int {dx \over x}=\ln {\left|x\right|}+K}
∫
d
x
a
2
+
x
2
=
1
a
(bgtan)
x
a
+
K
{\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}{\mbox{(bgtan)}}{x \over a}+K}
∫
d
x
a
2
−
x
2
=
sin
−
1
x
a
+
K
{\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\sin ^{-1}{x \over a}+K}
∫
−
d
x
a
2
−
x
2
=
cos
−
1
x
a
+
K
{\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\cos ^{-1}{x \over a}+K}
∫
d
x
x
x
2
−
a
2
=
1
a
sec
−
1
|
x
|
a
+
K
{\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\sec ^{-1}{|x| \over a}+K}
∫
ln
x
d
x
=
x
ln
x
−
x
+
K
{\displaystyle \int \ln {x}\,dx=x\ln {x}-x+K}
∫
log
b
x
d
x
=
x
log
b
x
−
x
log
b
e
+
K
{\displaystyle \int \log _{b}{x}\,dx=x\log _{b}{x}-x\log _{b}{e}+K}
∫
e
x
d
x
=
e
x
+
K
{\displaystyle \int e^{x}\,dx=e^{x}+K}
∫
a
x
d
x
=
a
x
ln
a
+
K
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+K}
∫
sin
x
d
x
=
−
cos
x
+
K
{\displaystyle \int \sin {x}\,dx=-\cos {x}+K}
∫
cos
x
d
x
=
sin
x
+
K
{\displaystyle \int \cos {x}\,dx=\sin {x}+K}
∫
tan
x
d
x
=
ln
|
sec
x
|
+
K
{\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+K}
∫
cot
x
d
x
=
−
ln
|
csc
x
|
+
K
{\displaystyle \int \cot {x}\,dx=-\ln {\left|\csc {x}\right|}+K}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
K
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+K}
∫
csc
x
d
x
=
−
ln
|
csc
x
+
cot
x
|
+
K
{\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+K}
∫
sec
2
x
d
x
=
tan
x
+
K
{\displaystyle \int \sec ^{2}x\,dx=\tan x+K}
∫
csc
2
x
d
x
=
−
cot
x
+
K
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+K}
∫
sec
x
tan
x
d
x
=
sec
x
+
K
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+K}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
K
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+K}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
x
cos
x
)
+
K
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+K}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
x
cos
x
)
+
K
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+K}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
K
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+K}
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
∫
bgtan
x
d
x
=
x
bgtan
x
−
1
2
ln
|
1
+
x
2
|
+
K
{\displaystyle \int {\mbox{bgtan}}{x}\,dx=x\,{\mbox{bgtan}}{x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+K}
∫
sinh
x
d
x
=
cosh
x
+
K
{\displaystyle \int \sinh x\,dx=\cosh x+K}
∫
cosh
x
d
x
=
sinh
x
+
K
{\displaystyle \int \cosh x\,dx=\sinh x+K}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
K
{\displaystyle \int \tanh x\,dx=\ln |\cosh x|+K}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
K
{\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+K}
∫
sech
x
d
x
=
bgtan
(
sinh
x
)
+
K
{\displaystyle \int {\mbox{sech}}\,x\,dx={\mbox{bgtan}}(\sinh x)+K}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
K
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+K}
∫
sech
2
x
d
x
=
tanh
x
+
K
{\displaystyle \int {\mbox{sech}}^{2}x\,dx=\tanh x+K}
∫
sinh
−
1
x
d
x
=
x
sinh
−
1
x
−
x
2
+
1
+
K
{\displaystyle \int \sinh ^{-1}x\,dx=x\sinh ^{-1}x-{\sqrt {x^{2}+1}}+K}
∫
cosh
−
1
x
d
x
=
x
cosh
−
1
x
−
x
2
−
1
+
K
{\displaystyle \int \cosh ^{-1}x\,dx=x\cosh ^{-1}x-{\sqrt {x^{2}-1}}+K}
∫
tanh
−
1
x
d
x
=
x
tanh
−
1
x
+
1
2
log
(
1
−
x
2
)
+
K
{\displaystyle \int \tanh ^{-1}x\,dx=x\tanh ^{-1}x+{\frac {1}{2}}\log {(1-x^{2})}+K}
∫
csch
−
1
x
d
x
=
x
csch
−
1
x
+
log
[
x
(
1
+
1
x
2
+
1
)
]
+
K
{\displaystyle \int {\mbox{csch}}^{-1}\,x\,dx=x{\mbox{csch}}^{-1}x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+K}
∫
sech
−
1
x
d
x
=
x
sech
−
1
x
−
bgtan
(
x
x
−
1
1
−
x
1
+
x
)
+
K
{\displaystyle \int {\mbox{sech}}^{-1}\,x\,dx=x{\mbox{sech}}^{-1}x-{\mbox{bgtan}}{\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+K}
∫
coth
−
1
x
d
x
=
x
coth
−
1
x
+
1
2
log
(
x
2
−
1
)
+
K
{\displaystyle \int \coth ^{-1}x\,dx=x\coth ^{-1}x+{\frac {1}{2}}\log {(x^{2}-1)}+K}
∫
0
∞
x
e
−
x
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{{\sqrt {x}}\,e^{-x}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
∫
0
∞
e
−
x
2
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{e^{-x^{2}}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
(die Gaussiese integraal )
∫
0
∞
x
e
x
−
1
d
x
=
π
2
6
{\displaystyle \int _{0}^{\infty }{{\frac {x}{e^{x}-1}}\,dx}={\frac {\pi ^{2}}{6}}}
∫
0
∞
x
3
e
x
−
1
d
x
=
π
4
15
{\displaystyle \int _{0}^{\infty }{{\frac {x^{3}}{e^{x}-1}}\,dx}={\frac {\pi ^{4}}{15}}}
∫
0
∞
sin
(
x
)
x
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin(x)}{x}}\,dx={\frac {\pi }{2}}}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
1
⋅
3
⋅
5
⋅
⋯
⋅
(
n
−
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
n
π
2
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {1\cdot 3\cdot 5\cdot \cdots \cdot (n-1)}{2\cdot 4\cdot 6\cdot \cdots \cdot n}}{\frac {\pi }{2}}}
(mits n 'n ewe heelgetal en
n
≥
2
{\displaystyle \scriptstyle {n\geq 2}}
)
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
2
⋅
4
⋅
6
⋅
⋯
⋅
(
n
−
1
)
3
⋅
5
⋅
7
⋅
⋯
⋅
n
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {2\cdot 4\cdot 6\cdot \cdots \cdot (n-1)}{3\cdot 5\cdot 7\cdot \cdots \cdot n}}}
(mits n 'n onewe heelgetal en
n
≥
3
{\displaystyle \scriptstyle {n\geq 3}}
)
∫
0
∞
sin
2
x
x
2
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}{x}}{x^{2}}}\,dx={\frac {\pi }{2}}}
∫
0
∞
x
z
−
1
e
−
x
d
x
=
Γ
(
z
)
{\displaystyle \int _{0}^{\infty }x^{z-1}\,e^{-x}\,dx=\Gamma (z)}
(waar
Γ
(
z
)
{\displaystyle \Gamma (z)}
die Gamma funksie is)
∫
−
∞
∞
e
−
(
a
x
2
+
b
x
+
c
)
d
x
=
π
a
exp
[
b
2
−
4
a
c
4
a
]
{\displaystyle \int _{-\infty }^{\infty }e^{-(ax^{2}+bx+c)}\,dx={\sqrt {\frac {\pi }{a}}}\exp \left[{\frac {b^{2}-4ac}{4a}}\right]}
(waar
exp
[
u
]
{\displaystyle \exp[u]}
die eksponensiaalfunksie
e
u
{\displaystyle e^{u}}
is.)
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(waar
I
0
(
x
)
{\displaystyle I_{0}(x)}
die gewysigde Bessel funksie van die eerste tipe is.)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
x
2
+
y
2
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}{\sqrt {x^{2}+y^{2}}}}
∫
−
∞
∞
(
1
+
x
2
/
ν
)
−
(
ν
+
1
)
/
2
d
x
=
ν
π
Γ
(
ν
/
2
)
Γ
(
(
ν
+
1
)
/
2
)
)
{\displaystyle \int _{-\infty }^{\infty }{(1+x^{2}/\nu )^{-(\nu +1)/2}dx}={\frac {{\sqrt {\nu \pi }}\ \Gamma (\nu /2)}{\Gamma ((\nu +1)/2))}}\,}
(
ν
>
0
{\displaystyle \nu >0\,}
.
∫
a
b
f
(
x
)
d
x
=
(
b
−
a
)
∑
n
=
1
∞
∑
m
=
1
2
n
−
1
(
−
1
)
m
+
1
2
−
n
f
(
a
+
m
(
b
−
a
)
2
−
n
)
{\displaystyle \int _{a}^{b}{f(x)\,dx}=(b-a)\sum \limits _{n=1}^{\infty }{\sum \limits _{m=1}^{2^{n}-1}{\left({-1}\right)^{m+1}}}2^{-n}f(a+m\left({b-a}\right)2^{-n})}
Stewart, J. (2003). Single Variable calculus . (5th ed.). Belmont, USA: Thomson Learning.
Groenewald, G.J., Hitge, M. (2005). Analise II Studiegids vir WISK121A . Potchefstroom: Noordwes-Universiteit.
Jordan, D.W., Smith, P. (2002). Mathematical techniques: An introduction for the engineering, physical and mathematical sciences . USA: Oxford University Press.