in Wikipedia, die vrye ensiklopedie
Hier volg 'n lys van integrale (anti-afgeleide funksies) van irassionale funksies. Vir 'n volledige lys van integraalfunksies, sien lys van integrale. In hierdie artikel word die konstante van integrasie deurgaans weggelaat.


























Veronderstel x2 > a2 (vir x2 < a2, sien die volgende afdeling):




Hier
, waar die positiewe waarde van
geneem word.













![{\displaystyle \int {\frac {dx}{s^{5}}}={\frac {1}{a^{4}}}\left[{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/054a5959ce5e03cf279c1b29dff2ba014ac6dcde)
![{\displaystyle \int {\frac {dx}{s^{7}}}=-{\frac {1}{a^{6}}}\left[{\frac {x}{s}}-{\frac {2}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86843311de7fc72bc01f87742445f7c4b88899e9)
![{\displaystyle \int {\frac {dx}{s^{9}}}={\frac {1}{a^{8}}}\left[{\frac {x}{s}}-{\frac {3}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {3}{5}}{\frac {x^{5}}{s^{5}}}-{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca32b3a8d7f9040840f5d1de3467129edff0d80b)

![{\displaystyle \int {\frac {x^{2}\,dx}{s^{7}}}={\frac {1}{a^{4}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6a98057cf3f3d6b7025114445c972bb6b7b7af9d)
![{\displaystyle \int {\frac {x^{2}\,dx}{s^{9}}}=-{\frac {1}{a^{6}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {2}{5}}{\frac {x^{5}}{s^{5}}}+{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cce4b87e7a47ce42042803038139f830afd5d37)








Veronderstel dat daar 'n p en q bestaan sodat ax2 + bx + c nie tot die uitdrukking px + q2 verneenvoudig kan word nie.





























- Peirce, Benjamin Osgood (1929) [1899]. "Chap. 3". A Short Table of Integrals (3rde hersiene uitgawe uitg.). Boston: Ginn and Co. pp. 16–30.
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1972, Dover: New York. (Sien hoofstuk 3.)
- Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (reds.). Table of Integrals, Series, and Products (in English). Vertaal deur Scripta Technica, Inc. (8 uitg.). Academic Press, Inc. ISBN 0-12-384933-0. LCCN 2014010276. ISBN 978-0-12-384933-5.
{{cite book}}
: AS1-onderhoud: onerkende taal (link) (Asook verskeie vorige uitgawes.)