Boor (element)

in Wikipedia, die vrye ensiklopedie
Spring na: navigasie, soek
berilliumboorkoolstof
 
B
Al  
 
 
Klik vir beskrywing
Algemeen
Naam, Simbool, Getal Boor, B, 5
Reeks Metaalagtiges
Groep, Periode, Blok 13 (IIIA), 2, p
Digtheid, Hardheid 2460 kg/m3, 9.3
Voorkoms Swart
B,5.jpg
Atomic properties
Atoommassa 10.811 ame
Atoomradius (bereken) 85 (87)pm
Kovalente radius 82 pm
van der Waals radius geen data
Elektronkonfigurasie [He]2s22p1
e- 'e per energie vlak 2, 3
Oksidasietoestande (Oksied) 3 (effe suur)
Kristalstruktuur Rombohedraal
Fisiese eienskappe
Toestand van materie Vastestof (nie-magneties)
Smeltpunt 2349 K
Kookpunt 4200 K
Molêre volume 4.39 ×10-6

m3/mol

Verdampingswarmte 489.7 kJ/mol
Smeltingswarmte 50.2 kJ/mol
Dampdruk 0.348 Pa at 2573 K
Spoed van klank 16200 m/s teen 293.15 K
Diverse
Elektronegatiwiteit 2.04 (Pauling skaal)
Spesifieke warmtekapasiteit 1026 J/(kg*K)
Elektriese geleidingsvermoë 1.0 10-4/(m·ohm)
Termiese geleidingsvermoë 27.4 W/(m*K)
1ste ionisasie potensiaal 800.6 kJ/mol
2de ionisasiepotensiaal 2427.1 kJ/mol
3rde ionisasiepotensiaal 3659.7 kJ/mol
4de ionisasiepotensiaal 25025.8 kJ/mol
5de ionisasiepotensiaal 32826.7 kJ/mol
Mees stabiele isotoop
iso NV halfleeftyd VM VE MeV VP
10B 19.9% B is stabiel met 5 neutrone
11B 80.1% B is stabiel met 6 neutrone
SI-eenhede & STD buiten waar anders vermeld.

Boor (Latyn:Borium), is die chemiese element in die periodieke tabel met die simbool B en atoomgetal van 5.

Dit is 'n trivalente metaalagtige element. Boor kom in oorvloed voor in die erts genaamd boraks. Daar bestaan twee allotrope van boor; amorfe boor is 'n bruin poeier, maar metalliese boor is swart. Die metalliese vorm is hard (9.3 op die Moh skaal) en 'n slegte geleier van elektrisiteit by kamertemperatuur. Dit kom nie in die suiwer vorm in die natuur voor nie.

Kenmerkende eienskappe[wysig]

Boor is 'n elektron-arme element met 'n vakante p-orbitaal. Verbindings van boor gedra hulle dikwels as Lewis sure, wat geredelik verbind met elektron-ryke stowwe in 'n poging om boor se dors vir elektrone te les.

Optiese eienskappe van die element sluit in die deurskeidenheid tot infrarooi lig. By standaardtemperatuur is boor 'n swak geleier van elektrisiteit maar by hoë temperature is dit 'n goeie geleier.

Boor het die hoogste breekkrag van enige bekende element. Boornitried kan gebruik word om materiale te maak wat net so hard as diamant is. Die nitried tree ook op as 'n elektriese isoleerder maar sy warmtegeleidingsvermoë is soortgelyk aan metale. Die element het ook smeringseienskappe wat soortgelyk is aan grafiet. Boor is soortgelyk aan koolstof ten opsigte van sy vermoë om stabiele kovalent verbinde molekulêre netwerke te vorm.

Aanwendings[wysig]

Die mees ekonomies belangrike verbinding van boor is natrium tetraboraat dekahidraat Na2B4O7 · 10H2O, oftewel boraks, wat in groot maat gebruik word in die vervaardiging van isolerende veselglas en natrium perboraat bleikmiddel. Ander gebruike sluit in:

  • Vanweë sy kenmerklike groen kleur, word amorfe boor gebruik vir vuurwerke.
  • Boorsuur is 'n belangrike stof wat in die tekstielnywerheid gebruik word.
  • Verbindings van boor vind uitgebreide aanwending in organiese sintese en in die vervaardiging van boorsilikaat glase.
  • Ander verbindings word gebruik as houtpreserveermiddels en is besonder aantreklik in hierdie verband as gevolg van sy lae giftigheid.
  • Boor-10 word gebruik om te help met die beheer van kernreaktore, 'n skild teen straling en as neutronverklikker.
  • Boorfilamente is hoë sterkte, liggewig materiale wat hoofsaaklik gebruik word vir gevorderde lugvaart- en ruimtevaartstrukture.

Boorverbindings word oorweeg vir gebruik in 'n wye reeks aanwendings insluitende as komponente in suiker-deurlaatbare membrane, koolhidraatsensors en biovervoegings. Medisinale gebruike wat ondersoek word sluit in boor-neutron-vangsterapie en medisynetoediening. Daar is boorverbindings wat belowend lyk vir die behandeling van artritis.

Hidriede van boor word geredelik geoksideer en stel aansienlike hoeveelhede energie vry. Hulle is daarom bestudeer vir moontlike gebruik vir vuurpylbrandstof.

Geskiedenis[wysig]

Verbindings van boor (Arabies Buraq, Persies Burah) was vir duisende jare bekend gewees. In vroeë Egipte het mumifisering staatgemaak op die erts bekend as natron, wat borate bevat het sowel as ander algemene soute. Boraks glase was in Sjina gebruik vanaf die jaar 300, en boorverbindings is ook gebruik in glasvervaarding in antieke Rome.

Die element is eers geïsoleer in 1808 deur Sir Humphry Davy, Gay-Lussac en L.J.Thenard, tot 'n 50% suiwerheid. Die mans het nie die stof as 'n element erken nie. Dit was Jöns Jacob Berzelius wat boor in 1824 as 'n element geïdentifiseer het. Die eerste suiwer boor was deur die Amerikaanse chemikus W. Weintraub in 1909 geproduseer.

Voorkoms[wysig]

Die Verenigde State en Turkye is die wêreld se grootste produsente van boor. Boor kom nie in elementale vorm in die natuur voor nie maar in kombinasie in boraks, boorsuur, kolemaniet, kerniet, uleksiet en borate. Boorsuur word soms in vulkaniese fonteinwaters gevind. Uleksiet is 'n boraatmineraal wat natuurlike veseloptiese eienskappe het.

Ekonomies belangrike bronne van die erts rasoriet (kerniet) en tincal (borakserts) wat beide in die Mojave Woestyn in Kalifornië (met borakserts die belangrikste bron daar). Uitgebreide boraksneerslae word ook in Turkye gevind.

Suiwer elementale boor is nie maklik om voor te berei nie. Die vroegste metode wat gebruik is, het die reduksie van booroksied met metale soos magnesium of aluminium behels. Die produk sodoende voorberei is egter amper altyd met metaalboriede besoedel. Suiwer boor kan voorberei word deur vlugtige boorhalogeniede met waterstof te reageer teen hoë temperature.

In 1997 het kristallyne boor (99% suiwer) ongeveer 5 VS dollar per gram gekos en amorfe boor het ongeveer 2 VS dollar per gram gekos.

Isotope[wysig]

Boor het twee stabiele isotope wat natuurlik voorkom, B-11 (80.1%) en B-10 (19.9%).

Die massaverskil lei tot 'n wye verskil δB-11 waardes in natuurlike waters, wat wissel van -16 tot +59. Isotoopfraksionering van boor word beheer deur die uitruilreaksies van die boorspesie B(OH)3 and B(OH)4. Boor isotope word ook gefraksioneer tydens mineraalkristallisasie, tydens H2O faseverandering in hidrotermiese stelsels en tydens hidrotermiese verander van rots. Die laaste effek (spesie voorkeur verwydering van die 11B(OH)3 ioon op kleie wat lei tot oplossings verreik in 11B(OH)3) mag verantwoordelik wees vir die groot 11B verryking in seewater relatief tot die oseaniese kors en die kontinentale kors.

Voorsorgmaatreëls[wysig]

Elementale boor en borate is nie-toksies en daarom word geen spesiale voorsormaatreëls vereis tydens hantering nie. Sommige meer eksotiese boor-waterstof-verbindings is egter toksies en vereis versigtige hantering.

Sien ook: Boortekort

Verwysings[wysig]

Eksterne skakels[wysig]

Commons-logo.svg
Wikimedia Commons het meer media verwant aan:
Boor (element) (kategorie)